= http://htpc.al.ru/html/oieiaeeuieee_iaeuoua.html
Модули Пельтье
В холодильниках Пельтье используется обычный, так называемый термоэлектрический холодильник, действие которого основано на эффекте Пельтье. Данный эффект назван в честь французского часовщика Пельтье (1785-1845 г.), сделавшего свое открытие более полутора столетий назад - в 1834 г.
Сам Пельтье не совсем понимал сущность открытого им явления. Истинный смысл явления был установлен несколькими годами позже в 1838 году Ленцем (1804-1865 г.).
В углубление на стыке двух стержней из висмута и сурьмы Ленц поместил каплю воды. При пропускании электрического тока в одном направлении капля воды замерзала. При пропускании тока в противоположном направлении образовавшийся лед таял. Тем самым было установлено, что при прохождении через контакт двух проводников электрического тока, в зависимости от направления последнего, помимо джоулева тепла выделяется или поглощается дополнительное тепло, которое получило название тепла Пельтье. Это явление получило название явления Пельтье (эффекта Пельтье). Таким образом, оно является обратным по отношению к явлению Зеебека.
Если в замкнутой цепи, состоящей из нескольких металлов или полупроводников, температуры в местах контактов металлов или полупроводников разные, то в цепи появляется электрический ток. Это явление термоэлектрического тока и было открыто в 1821 году немецким физиком Зеебеком (1770-1831 г.).
В отличие от тепла Джоуля-Ленца, которое пропорционально квадрату силы тока (Q=R·I·I·t), тепло Пельтье пропорционально первой степени силы тока и меняет знак при изменении направления последнего. Тепло Пельтье, как показали экспериментальные исследования, можно выразить формулой:
Qп = П ·q
где q - количество прошедшего электричества (q=I·t), П - так называемый коэффициент Пельтье, величина которого зависит от природы контактирующих материалов и от их температуры.
Тепло Пельтье Qп считается положительным, если оно выделяется, и отрицательным, если оно поглощается.
Рис. 1. Схема опыта для измерения тепла Пельтье, Cu - медь, Bi - висмут.
В представленной схеме опыта измерения тепла Пельтье при одинаковом сопротивлении проводов R (Cu+Bi), опущенных в калориметры, выделится одно и то же джоулево тепло в каждом калориметре, а именно по Q=R·I·I·t. Тепло Пельтье, напротив, в одном калориметре будет положительно, а в другом отрицательно. В соответствии с данной схемой можно измерить тепло Пельтье и вычислить значения коэффициентов Пельтье для разных пар проводников.
Открытие эффекта Пельтье оказало большое влияние на последующее развитие физики, а в дальнейшем и различных областей техники.
Итак, суть открытого эффекта заключается в следующем: при прохождении электрического тока через контакт двух проводников, сделанных из различных материалов, в зависимости от его направления, помимо джоулева тепла выделяется или поглощается дополнительное тепло, которое получило название тепла Пельтье. Степень проявления данного эффекта в значительной мере зависит от материалов выбранных проводников и используемых электрических режимов.
Классическая теория объясняет явление Пельтье тем, что электроны, переносимые током из одного метала в другой, ускоряются или замедляются под действием внутренней контактной разности потенциалов между металлами. В первом случае кинетическая энергия электронов увеличивается, а затем выделяется в виде тепла. Во втором случае кинетическая энергия электронов уменьшается, и эта убыль энергии пополняется за счет тепловых колебаний атомов второго проводника. В результате происходит охлаждение. Более полная теория учитывает изменение не потенциальной энергии при переносе электрона из одного металла в другой, а изменение полной энергии.
Наиболее сильно эффект Пельтье наблюдается в случае использования полупроводников p- и n-типа проводимости. В зависимости от направления электрического тока через контакт полупроводников разного типа - p-n- и n-p-переходов вследствие взаимодействия зарядов, представленных электронами (n) и дырками (p), и их рекомбинации энергия либо поглощается, либо выделяется. В результате данных взаимодействий и порожденных энергетических процессов тепло либо поглощается, либо выделяется.
Модуль Пельтье, представляет собой термоэлектрический холодильник, состоящий из последовательно соединенных полупроводников p- и n-типа, образующих p-n- и n-p-переходы. Каждый из таких переходов имеет тепловой контакт с одним из двух радиаторов. В результате прохождения электрического тока определенной полярности образуется перепад температур между радиаторами модуля Пельтье: один радиатор работает как холодильник, другой радиатор нагревается и служит для отвода тепла. На рис. 4 представлен внешний вид типового модуля Пельтье.
Типичный модуль обеспечивает значительный температурный перепад, который составляет несколько десятков градусов. При соответствующем принудительном охлаждении нагревающегося радиатора второй радиатор - холодильник, позволяет достичь отрицательных значений температур. Для увеличения разности температур возможно каскадное включение термоэлектрических модулей Пельтье при обеспечении адекватного их охлаждения. Это позволяет сравнительно простыми средствами получить значительный перепад температур и обеспечить эффективное охлаждение защищаемых элементов.Устройства охлаждения на основе модулей Пельтье часто называют активными холодильниками Пельтье или просто кулерами Пельтье.
Использование модулей Пельтье в активных кулерах делает их существенно более эффективными по сравнению со стандартными типами кулеров на основе традиционных радиаторов и вентиляторов. Однако в процессе конструирования и использования кулеров с модулями Пельтье необходимо учитывать ряд специфических особенностей, вытекающих из конструкции модулей, их принципа работы, архитектуры современных аппаратных средств компьютеров и функциональных возможностей системного и прикладного программного обеспечения.
Большое значение играет мощность модуля Пельтье, которая, как правило, зависит от его размера. Модуль малой мощности не обеспечивает необходимый уровень охлаждения, что может привести к нарушению работоспособности защищаемого электронного элемента, например, процессора вследствие его перегрева. Однако применение модулей слишком большой мощности может вызвать понижение температуры охлаждающего радиатора до уровня конденсации влаги из воздуха, что опасно для электронных цепей. Это связано с тем, что вода, непрерывно получаемая в результате конденсации, может привести к коротким замыканиям в электронных цепях компьютера. Здесь уместно напомнить, что расстояние между токопроводящими проводниками на современных печатных платах нередко составляет доли миллиметров. Тем не менее, несмотря ни на что, именно мощные модули Пельтье в составе высокопроизводительных кулеров и соответствующие системы дополнительного охлаждения и вентиляции позволили в свое время фирмам KryoTech и AMD в совместных исследованиях разогнать процессоры AMD, созданные по традиционной технологии, до частоты, превышающей 1 ГГц, то есть увеличить их частоту работы почти в 2 раза по сравнению со штатным режимом их функционирования. И необходимо подчеркнуть, что данный уровень производительности достигнут в условиях обеспечения необходимой стабильности и надежности работы процессоров в форсированных режимах. Ну, а следствием такого экстремального разгона явился рекорд производительности среди процессоров архитектуры и системы команд 80х86. А фирма KryoTech неплохо заработала, предлагая на рынке свои установки охлаждения. Снабженные соответствующей электронной начинкой, они оказались востребованными в качестве платформ высокопроизводительных серверов и рабочих станций. А фирма AMD получила подтверждение высокого уровня своих изделий и богатый экспериментальный материал для дальнейшего совершенствования архитектуры своих процессоров. К слову сказать, аналогичные исследования были проведены и с процессорами Intel Celeron, Pentium II, Pentium III, в результате которых был получен тоже значительный прирост производительности.
Необходимо отметить, что модули Пельтье в процессе своей работы выделяют сравнительно большое количество тепла. По этой причине следует применять не только мощный вентилятор в составе кулера, но и меры для снижения температуры внутри корпуса компьютера для предупреждения перегрева остальных компонентов компьютера. Для этого целесообразно использовать дополнительные вентиляторы в конструктиве корпуса компьютера для обеспечения лучшего теплообмена с окружающей средой вне корпуса.
Следует отметить, что системы охлаждения на основе модулей Пельтье используются не только в электронных системах, таких как компьютеры. Подобные модули применяются для охлаждения различных высокоточных устройств. Большое значение модули Пельтье имеют для науки. В первую очередь это касается экспериментальных исследований, выполняемых в физике, химии, биологии.
Информацию о модулях и холодильниках Пельтье, а также особенностях и результатах их применения можно найти на сайтах в Internet, например, по следующим адресам:
· wwwmelcor.com
· wwwkryotech.com
· wwwcomputernerd.com
· wwwtomshardware.com
Особенности эксплуатации
Модули Пельтье, применяемые в составе средств охлаждения электронных элементов, отличаются сравнительно высокой надежностью, и в отличие от холодильников, созданных по традиционной технологии, не имеют движущихся частей. И, как это отмечалось выше, для увеличения эффективности своей работы они допускают каскадное использование, что позволяют довести температуру корпусов защищаемых электронных элементов до отрицательных значений даже при их значительной мощности рассеяния.
Однако кроме очевидных преимуществ, модули Пельтье обладает и рядом специфических свойств и характеристик, которые необходимо учитывать при их использовании в составе охлаждающих средств. Некоторые из них были уже отмечены, но для корректного применения модулей Пельтье требуют более детального рассмотрения. К важнейшим характеристикам относятся следующие особенности эксплуатации:
Модули Пельтье, выделяющие в процессе своей работы большое количество тепла, требуют наличия в составе кулера соответствующих радиаторов и вентиляторов, способных эффективно отводить избыточное тепло от охлаждающих модулей. Следует отметить, что термоэлектрические модули отличаются относительно низким коэффициентом полезного действия (кпд) и, выполняя функции теплового насоса, они сами являются мощными источниками тепла. Использование данных модулей в составе средств охлаждения электронных комплектующих компьютера вызывает значительный рост температуры внутри системного блока, что нередко требует дополнительных мер и средств для снижения температуры внутри корпуса компьютера. В противном случае повышенная температура внутри корпуса создает трудности для работы не только для защищаемых элементов и их систем охлаждения, но и остальным компонентам компьютера. Необходимо также подчеркнуть, что модули Пельтье являются сравнительно мощной дополнительной нагрузкой для блока питания. С учетом значения тока потребления модулей Пельтье величина мощности блока питания компьютера должна быть не менее 250 Вт. Все это приводит к целесообразности выбора материнских плат и корпусов конструктива ATX с блоками питания достаточной мощности. Использование данного конструктива облегчает для комплектующих компьютера организацию оптимальных теплового и электрического режимов. Следует отметить, что существуют холодильники Пельтье с собственным блоком питания.
Модуль Пельтье, в случае выхода его из строя, изолирует охлаждаемый элемент от радиатора кулера. Это приводит к очень быстрому нарушению теплового режима защищаемого элемента и скорому выходу его из строя от последующего перегрева.
Низкие температуры, возникающие в процессе работы холодильников Пельтье избыточной мощности, способствуют конденсации влаги из воздуха. Это представляет опасность для электронных компонентов, так как конденсат может вызвать короткие замыкания между элементами. Для исключения данной опасности целесообразно использовать холодильники Пельтье оптимальной мощности. Возникнет конденсация или нет, зависит от нескольких параметров. Важнейшими являются: температура окружающей среды (в данном случае температура воздуха внутри корпуса), температура охлаждаемого объекта и влажность воздуха. Чем теплее воздух внутри корпуса и чем больше влажность, тем вероятнее произойдет конденсация влаги и последующий выход из строя электронных элементов компьютера. Ниже представлена таблица, иллюстрирующая зависимость температуру конденсации влаги на охлаждаемом объекте в зависимости от влажности и температуры окружающего воздуха. Используя эту таблицу, можно легко установить, существует ли опасность конденсации влаги или нет. Например, если внешняя температура 25°C, а влажность 65%, то конденсация влаги на охлаждаемом объекте происходит при температуре его поверхности ниже 18°C.
Кроме указанных особенностей, необходимо учитывать и ряд специфических обстоятельств, связанных с использованием термоэлектрических модулей Пельтье в составе кулеров, применяемых для охлаждения высокопроизводительных центральных процессоров мощных компьютеров.
Архитектура современных процессоров и некоторые системные программы предусматривают изменение энергопотребления в зависимости от загрузки процессоров. Это позволяет оптимизировать их энергопотребление. Кстати, это предусмотрено и стандартами энергосбережения, поддерживаемыми некоторыми функциями, встроенными в аппаратно-программное обеспечение современных компьютеров. В обычных условиях оптимизация работы процессора и его энергопотребления благотворно сказывается как на тепловом режиме самого процессора, так и общем тепловом балансе. Однако следует отметить, что режимы с периодическим изменением энергопотребления могут плохо сочетаться со средствами охлаждения процессоров, использующих модули Пельтье. Это связано с тем, что существующие холодильники Пельтье, как правило, рассчитаны на непрерывную работу. В связи с этим, простейшие холодильники Пельтье, не обладающие средствами контроля, не рекомендуется использовать вместе с охлаждающими программами, такими как, например, CpuIdle, а также с операционными системами Windows NT/2000 или Linux.
В случае перехода процессора в режим пониженного энергопотребления и соответственно тепловыделения возможно значительное снижение температуры корпуса и кристалла процессора. Переохлаждение ядра процессора может вызвать в некоторых случаях временное прекращение его работоспособности, и как результат, стойкое зависание компьютера. Необходимо напомнить, что в соответствии с документацией фирмы Intel минимальная температура, при которой гарантируется корректная работа серийных процессоров Pentium II и Pentium III, обычно составляет +5 °C, хотя, как показывает практика, они прекрасно работают и при более низких температурах.
Некоторые проблемы могут возникнуть и в результате работы ряда встроенных функций, например, тех, которые осуществляют управление вентиляторами кулеров. В частности, режимы управления энергопотреблением процессора в некоторых компьютерных системах предусматривают изменение скорости вращения охлаждающих вентиляторов через встроенные аппаратные средства материнской платы. В обычных условиях это значительно улучшает тепловой режим процессора компьютера. Однако в случае использования простейших холодильников Пельтье уменьшение скорости вращения может привести к ухудшению теплового режима с фатальным результатом для процессора уже вследствие его перегрева работающим модулем Пельтье, который кроме выполнения функций теплового насоса, является мощным источником дополнительного тепла.
Необходимо отметить, что, как и в случае центральных процессоров компьютеров, холодильники Пельтье могут быть хорошей альтернативой традиционным средствам охлаждения видеочипсетов, используемых в составе современных высокопроизводительных видеоадаптеров. Работа таких видеочипсетов сопровождается значительным тепловыделением и обычно не подвержена резким изменениям режимов их функционирования.
Для того чтобы исключить проблемы с режимами изменяемого энергопотребления, вызывающих конденсацию влаги из воздуха и возможное переохлаждение, а в некоторых случаях даже перегрев защищаемых элементов, таких как процессоры компьютеров, следует отказаться от использования подобных режимов и ряда встроенных функций. Однако как альтернативу можно использовать системы охлаждения, предусматривающие интеллектуальные средства управления холодильниками Пельтье. Такие средства могут контролировать не только работу вентиляторов, но и изменять режимы работы самих термоэлектрических модулей, используемых в составе активных кулеров.
Появились сообщения об экспериментах по встраиванию миниатюрных модулей Пельтье непосредственно в микросхемы процессоров для охлаждения их наиболее критичных структур. Такое решение способствует лучшему охлаждению за счет снижения теплового сопротивления и позволяет значительно повысить рабочую частоту и производительность процессоров.
Работы в направлении совершенствования систем обеспечения оптимальных температурных режимов электронных элементов ведутся многими исследовательскими лабораториями. И системы охлаждения, предусматривающие использование термоэлектрических модулей Пельтье, считаются чрезвычайно перспективными